CUDA编译技术详解,包括nvcc编译器参数配置、虚拟架构和真实架构的区别、PTX和CUBIN文件生成,以及多架构兼容性编译策略。
Read more »

CUDA memory hierarchy explained, including register file, L1 cache, shared memory, constant cache, L2 cache, global memory, local memory, texture and constant memory characteristics and usage.
Read more »

CUDA流编程技术,包括流的创建、同步、销毁等基本操作,以及流优先级设置、非阻塞流使用等高级特性,帮助实现GPU并行计算优化。
Read more »

CUTLASS convolution implementation explained, including convolution parameter definitions (K, C, R, S), Conv2dProblemSize configuration, output size calculation formulas, and CUTLASS library applications in convolution operations.
Read more »

GEMM矩阵乘法优化技术详解,包括基础概念、向量内积和外积优化方法、双缓冲技术等核心优化策略,帮助提升GPU上矩阵运算性能。
Read more »

In-depth analysis of CUTLASS GEMM implementation, including MmaPolicy and MmaBase template class design, shared memory management, tensor references, warp-level GEMM operations, and other core code structures and implementation details.
Read more »

In-depth analysis of GPU architectures, covering NVIDIA GPU characteristics including Ampere A100, Turing, Volta, SM counts, CUDA cores, Tensor Core configurations, memory bandwidth, and detailed technical specifications comparison.
Read more »

GPU instruction throughput and latency analysis, detailing performance characteristics of different instruction types and instruction execution capabilities per SM, providing important reference data for GPU programming optimization.
Read more »
0%